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Abstract

When pricing casualty reinsurance, the actuary often faces the problem of experience 
data that have only very limited credibility.  Exposure rating using Increased Limit
Factors (ILFs) can offer a useful complement to experience rating.  In this paper we 
provide an introduction to the theory of Increased Limits Factors, review examples of 
common families of ILF curves, explain how ILFs can be used in excess insurance 
rating and reinsurance rating, and offer some guidance on setting up simulations 
using ILF severities.  
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1. Introduction

Pricing casualty reinsurance can be difficult; parameterisation can be very tricky and 
judgemental.  This can be compounded by limited number of claims and, claims from 
policies with limits. Fitting a loss distribution is fraught with many problems, not least 
of which is how to adjust for inflation and development.  Also there may be an 
absence of large claims in the loss history, and absence of evidence should not be 
taken as evidence of absence, i.e. “just because it hasn’t happened yet doesn’t mean 
that it can’t or it won’t”.  Or there may be too many large losses. This can lead to 
erratic results and uncertainty in pricing excess layered business if using frequency 
and severity or experienced based methods. Things can become more complex when 
policies with a variety of limits and deductibles are used and where the risk assumed 
is not 100% (co –insurance). 

Often in liability reinsurance there is a limited amount of claims data available, and 
due to the statistical variation in large losses there will always be a limit to how 
credible pricing estimates can be using experience based methods. Increased limits 
factors can provide stability in pricing estimates.  A historical record of consistent 
technical prices can become a valuable source of sustainable competitive advantage;
with additional information gained with respect to the uncertainty surrounding these 
estimates can prove useful additional information to enable better strategic planning 
allowing management and underwriters to better manage the insurance cycle.

The usual method of exposure rating property using standard well-known inflation-
independent exposure rating curves is not valid in liability insurance in the same way 
because here the claims sizes cannot be assumed to be scaled by the sums insured. 
Thus we need another method to apply to a risk profile to deduce expected losses 
above various thresholds.  This is especially vital when claims data is sparse and the 
insights gained can be useful in comparing claims experience to date with that 
expected. Exposure rating allows us to take on objective view of whether there have
been too many or too few large losses by having a measure that is not based upon the 
data itself (as a loss severity curve would be). We must also not lose sight of the fact 
that when exposure rating in general, the underlying loss ratio of the insurance 
business is a major factor influencing any reinsurance pricing.
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2 Limitations

Before addressing the critical elements of our technical analysis, we should pause to 
give a moment's consideration to the inevitable real-world limitations of some of the 
theory here.

We might take the example of the legal world of professional indemnity for solicitors.  
Here there are many small firms handling small scale real estate transfers and small 
scale domestic disputes and litigation.  However there are also a small number of very 
large firms, the biggest among which are leading the field in immense merger and 
acquisition transactions.  This second type of activity is largely unknown to the 
smaller and middle-sized firms.  For the small firms, the ILF's have been analysed and 
have been shown to be remarkably low - the price of $1m xs 1m for many small and 
middle-sized legal firms is often under 10% of the cost of the primary $1m.  However 
for very large firms, the risk of $10m xs 90m is not much reduced from the risk of 
$10m xs 50m, which implies a dramatically higher ILF.

Comparable problems arise in many fields. The ability of statisticians to roll data 
together across an occupation or a profession whilst maintaining legitimacy, is often 
going to be hampered by this kind of situation. So whilst the following work 
hopefully gives rise to a deeper understanding of the issues in developing this type of 
analytic capability, the work is always rooted in a core assumption that the underlying 
data has sufficient basic comparabilities. This assumption always needs to be tested in 
the actual-world reality before firm conclusions can be drawn.

3. Increased Limit Factors

In casualty insurance a loss is typically covered up to a specified limit. Assuming that 
the expected loss of a book is known when the limit is at a basic level, this expected 
loss clearly increases when the limit is raised. The ratio by which it increases is called 
the Increased Limit Factor. We’ll explore the distribution of the loss when the 
Increased Limit Factor is given for all limits above the basic level.

We’ll formalise the definition in a moment but first note that for stochastic modelling 
the ILF curve must be translated into a loss model. We’ll work with the standard 
insurance loss model which is described by the number of losses in a period (typically 
a year) described by the random variable N and a sequence of independent 
identically distributed losses K,,, 321 XXX all assumed to have the same distribution 
as a random variable X . The sequence of the losses is also assumed to be 
independent from the number of losses. The total loss S in a year is then given as 

∑ =
=

N

k kXS
0

, and it is a well-known fact that the total expected loss can be calculated 
as

( ) ( ) ( )XENESE ×= . (3.1)

When ratemaking insurers generally cap large losses at a suitable limit (class 
dependant), which would skew the experience of a particular combination of rating 
factors or set of rates.  That is large losses would appear as a full limit loss.  The rates 
then produced would be for a set limit.  In order to sell policies for limits greater than 
this limit, an extra premium needs to be charged. The calculation of this premium
would be done by multiplying the base premium by an Increased Limit Factor(ILF).  
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An alternative definition of an ILF, based on a size of loss distribution, is the ratio of 
the limited expected values.  The formula is shown below:-

( ) ( )[ ]
( )[ ]

( )[ ]
( )[ ]

( )[ ]
( )[ ]LXE

yXE
LxfE
yxfE

nELxfE
nEyxfEy

,min
,min

;
;

)(;
)(;Factor Limit Increased ==

×
×

= (3.2)

Where ( )[ ] ( )[ ]∫ −+=

y

yFydxxxfyxfE

0

1)(; (3.3)

I.e. the limited expected value
x   = Random variable

( )xf = probability density f unction of x (the severity distribution)
( )xF = cumulative distribution function of x
( )nE = the expected number of losses (from ground up)

y = limit required
L = Basic Limit

In general we can refer to the L as the Basic limit and it can be interpreted in pricing 
terms as the point where the large losses would be capped for the purpose of 
calculating your premium relativities to avoid getting distortions from large claims. 
Clearly this L does depend to some extend on the volume of data that you may have 
in estimating your original pricing rates, as with sparse data then almost any claim 
you could argue is a distortion.

As can be seen the ILFs are based purely on severity distributions (the frequency 
terms cancel out).

When calculating Increased Limit factors the data may be sparse at high loss 
severities so a loss distribution will be used to extrapolate the higher factors.  Also 
there is the difficulty for liability lines of claims inflation and development, where in 
practice inflation only may be used due to the sparseness of the data at higher loss 
levels.  Also it should be recognised that judgement is required in setting ILF factors
of the underlying severity distribution, in many cases judgement on the factors 
themselves may be used. We mention later some useful simple checks that can be 
used to ensure that any judgemental factors are themselves consistent and do not leave 
room for antiselection.

We first recap some of the basic ILF formulae found in Miccolis (1977).  These are 
derived below for convenience, and for a fuller discussion we refer the reader to 
Miccolis. 

The definition of the ILF formula is shown below:-
[ ]
[ ]

[ ]

[ ] ,)(1)(1

),(min(
),(min(
),(min()(

0













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B
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y
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


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B
yILF

dy
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Where B =E[min(X,L)] is the 
expected loss limited to basic 
limits

So that

Note f(y) = F’(y) = dF(y)/dy
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Thus

B
yFyILF )(1)(' −

= (3.4)

We can restate this equation as 

[ ] )('),(min()(1}{P1 yILFLXEyFyY ×=−=≤− (3.5)

This is significant as it shows the relationship between the underlying severity 
distribution and the ILF curve. In words, it tells us that, given an ILF curve above the
basic limit L, we know the severity distribution of the losses above L.  No information 
is given below the threshold which we obviously cannot expect. This observation was 
further analysed in Mack (2003) and we refer the interested reader to their article.

The interpretation of this formula leads to some useful checks that can be applied to 
ILF factors.  As ∞→y then 1)( →yF so that 0)(' →yILF , the interpretation of 
this is that the ILF factors converge to a constant value, for some value.  This implies 
that there is no additional charge for limits above this level (strictly speaking, the 
additional charge tends to zero). In a practical sense this can be a very high limit 
where we can see no possibility of a loss this size, and would be the largest limit on 
offer, where this point lies may have commercial implications. Commercially what 
happens is that you glide imperceptibly, from a layer that's recognisably priced in 
relation to the risk of loss, into a layer that's priced only in relation to the cost of the 
capital deployed.

Also .since )(''),(min()()( yILFbYE
dc

ydFyf ×−== so that 
)),(min(

)()(''
bYE

yfyILF −
=

(3.6)

That is the 2nd derivative of the ILF function is always <=0 (as f(y) is >=0, and 
E(min(Y,b))>0), so that the ILF’(y) must be monotonically decreasing (i.e. the 2nd

derivative cannot be positive; that is, the additional charge per unit of limit at a higher 
attachment cannot be greater than the charge at a lower attachment), and ILF(y) must 
be strictly increasing (can be stationary, as shown above).  

These properties are very important properties of ILFs and are worth summarising and 
restating:-

(i) ILF values are non decreasing.
Any scale of ILFs should always increase.

(ii) ILF values are asymptotically constant.
Any scale of ILFs should always approach a constant value.

(iii) ILF curves are concave down.
Any scale of ILFs should increase at a decreasing rate.

This leads us to a simple practical tests to estimate whether ILFs that have emerged 
over time (i.e. through judgment and continual massaging), are consistent with these 
rules.  The ILF must always increase (they can level off at a suitably high level of 
loss), and they must increase at a decreasing rate, so that we can test the differences 
between the ILFs.  If these rules are not met, then there exists the possibility to get 
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pricing inconsistencies, which no doubt would be discovered by the market and lead 
to anti-selection.

An example may help to visualise this, below we show a set of ILFs that violate the 
ILF properties:-

Limit ILF First Order Second Order
Difference Differences

$1,000,000 1.000 2.00E-7 +0 00E0
$2,000,000 1.200 2.00E-7 -1.50E-7
$3,000,000 1.400 5.00E-8 +2.70E-8
$4,000,000 1.450 7.70E-8 -2.03E-9
$5,000,000 1.527 6.63E-8
$6,000,000 1.602

Here we see that the probability of a loss exceeding $1m is the same as the probability 
of exceeding $2m, so that there is no probability of a loss in the range $1m to $2m. 
We also see that the probability of getting a loss above $4m is greater than the 
probability of exceeding $3m, thus there is a negative probability of being in the 
range $3m to $4m. These ILF may look sensible when you cast your eye down their 
absolute values, but with a little work we can see that they will not generate sensible 
or consistent prices.

Given a set of ILFs it is possible to reverse engineer the severity distribution that was 
used to create them.  This can be useful as it may be easier to explain and validate this 
distribution than to discuss the ILFs. It may also be easier to discuss the probability of 
various loss sizes, than ILF factors directly.
.

4. Parametric Formulations of ILFs

4.1 Riebesell

This is based upon the work of the German Actuary Paul Riebesell (1936). Suppose
the standard risk premium for a limit of L is ( )LPPL = . Then, if the limit (or sum 
insured) is for example doubled, the amount of risk premium required will be

( ) ( )zPLP L += 12 , i.e., an increase by a factor of ( )z+1 . The general rule can be easily 

derived as ( ) ( )iL
i zPLP += 12 .  By using a substitution of it 2= , i.e., ( )2,log ti = (i.e.,

log base 2) this can be rewritten as ( ) ( ) ( )2,log1 t
L zPtLP += . This formula can be written 

more helpful to give the premium for any desired limit in terms of the relativity to the 

base premium (i.e. substitute tLL = , ( ) ( ) 









+= 2,log1 L

y
L zPyP ). By using the law 

of logs, this can be written most conveniently as ( )
( )






























=

+ 2,1log z

L L
yPyP , from this 

we can define the ILF such that:-

( )
( )2,1log z

R L
yyILF

+














= (4.1)

So that P(y) = PL. ILFR(y), and we can see how easy the ILFs are to apply in practice.  
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4.1.1 Some Properties of z

• ( )1,0∈z
• z is greater than 0. If a larger limit is charged, then there should be more 

premium charged. However, if this were not the case, then we would be 
assuming some limit on the losses such that the increase in limit generates no 
additional loss cost.

• z is less than 1. If 1 (or more) is selected, then we are assuming the increase 
in cost is linear. This does not apply to any claims distribution applied in 
practice, as larger losses have a smaller probability of occurring, indeed for 
any uncapped loss distribution, this is necessarily the case. 

We could also generalise the formula in the sense that the factor of 2 may not be 
“exactly right”. Many ILFs in practice can be well approximated using a natural 
logarithm curve for smoothing, suggesting a factor of Euler’s number (e = 
2.718281828…). From a pragmatic perspective, the factor of 2 appears to be 
reasonable in a wide range of circumstances.

Mack & Fackler (2003) demonstrated that there exist loss distributions that lead to 
Riebesell's rule, and it is not intended to cover this ground again here.

4.2 Pareto

An equivalent version (a simple re-parameterisation) is the Pareto curve

( )
( )β−







=

1

b
xxILFP (4.2)

Whose name suggests a connection with a Pareto severity distribution. This was 
indeed demonstrated in MF. 

The advantages of the Pareto model:-

• The simplicity of the model (i.e. a single parameter from a well understood 
loss distribution).

• It is possible to get a feel for the parameters for particular classes, consistent 
with studies of loss data. For example, liability parameters Pareto parameter 
0.7 to 1 , property parameters 1- 1.9.

• It can be used with loss experience to rate using a mixture of exposure (the 
Pareto model) and experience (using the actual losses to estimate the 
parameter)

• Simple to express rates as mathematical formulas

Disadvantages

• Small judgemental changes in parameter values can generate large swings in 
resultant prices

• Has a heavy tail
• Is over simplistic, and could be abused to justify a price which may not be 

adequate

4.3 Mixed Exponential

This leads us to the question if other parametric ILF curves can be characterised. For 
example, a severity distribution of exponential type, which has cumulative 
distribution function ( ) { }λxxF −−= exp1 leads to an ILF:-
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( ) { }
{ }λ

λ
L
xxILFE −−

−−
=

exp1
exp1

. (4.3)

This can be seen by first calculating ( )[ ] { }( )λλ LLXE −−= exp1,min and then, applying 
equation 1, it follows 

( ) { }
( )[ ]

{ }
{ }( )λλ

λ
L

x
LXE

xXPxFIL E

−−
−

=

>
=′

exp1
exp

,min
(4.4)

and the result follows by integration.

As mentioned earlier, there are a large number of mixed exponential curves (Keatinge 
(1999) that are used in casualty modelling. The Insurance Services Office “ISO” have 
written extensively on ILF issues (White S & Mrazek K 2004, Thorpe (2008), 
Svenguard (2004).

We need to formalise the notion of a mixed distribution before we derive their ILFE.

Given a number of  n independent random variables nYYY ,,, 21 K with weights 

nwww ,,, 21 K (the weights must sum to 1). They can be “mixed” in the following way: 
first we pick the random variable (i.e. we pick a number nkk ≤≤1, ), then we sample 
from the random variable kY . This heuristic idea of mixing random variables can be 
mathematically formalised by a discrete random variable K with outcomes ,k

nk ≤≤1 , each with probability kw . The mixed distribution is then represented by the 

random variable KY which has cumulative distribution function ( ) ( )∑ =
=

n

k kk xFwxF
1

 
which has, for the exponential case, the form

( ) { }( )∑ =
−−=

n

k kkISO xwxF
1

exp1 λ . (4.5)
As above, we start with the calculation of the limited mean 

( )[ ] ( )[ ]

{ }( )∑
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=

=

−−

=

n
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n

k kkK
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LXEwLXE

1

1

exp1

,min,min

λλ

The ILF curve is then 
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LXE
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K

n

k kk
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n
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K
K

ISO

,min
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exp11

,min

1

1

∑

∑

=

=

−
=

−−−
=

>
=′

λ

λ

(4.6)

and integration yields the result

( )
{ }( )

( )[ ]

{ }( )

{ }( )∑
∑

∑

=

=

=

−−

−−
=

−−
=

n

k kkk

n

k kkk

K

n

k kkk
ISO

Lw

xw

LXE

xw
xILF

1

1

1

exp1

exp1

,min

exp1
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λλ

λλ

(4.7)
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The ISO office provides the parameters underlying the mixed exponential, and by 
using suitable adjustments they can be adjusted for inflation. Since 1971, ISO has 
been a leading source of information about US risk; they supply data, analytics, and 
decision-support services for professionals in many fields.

5. Excess of Loss Reinsurance Rating

In order to calculate a risk premium for an excess of loss reinsurance layer, using ILFs 
we need the loss ratio of the underlying business. To convert this into an office 
premium we need some further assumptions regarding the loss ratio required by the 
excess writer and the other loadings, it is not intended to cover these here as these are 
well covered in other actuarial papers.

(4.1)

Where:-

Variables
• Deductible (P) = Policy Deductible
• Limit (P) = Policy Limit
• Deductible (R) = Reinsurance Deductible
• Limit (R) = Reinsurance Limit

Functions
ILF (x) = Increased Limit Factor at limit x
Min(x, y) = the minimum of x and y

This can easily be visualised as shown below:-

These calculations are performed at each risk banding within a standard “risk profile” 
showing information such as 

• Policy count
• Premium
• Policy Limit
• Policy Deductible

Policy 
Deduct

Policy 
Limit

Policy 
Limit

Policy 
Deduct

Policy 
Deduct

Policy 
Limit

RI Limit
RI Primary

{ } { }[ ]
PREMPOL

RExcessPExcessPLimitPExcessRLimitRExcessPExcessPLimitPExcess
×

+

++−+++

(P)}ILF(Excess-Excess(P))(P){ILF(Limit
)()(),()(minILF)()()(),()(minILF
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The information is usually provided in bandings say $1m, $2m etc. Other aggregated 
information such as total policy limit is sometime also provided within these bands 
where the band contains all limits up to and including X, but not all policies will be at 
the maximum, so extra information is helpful in assessing the true risk and hence the 
reinsurance pricing. The ability to price each band naturally leads us to ask about the 
underlying frequency and severity distributions, this information we can extract using 
the information contained within the ILFs.

Other variations on the formula are required where there is coinsurance of policy 
limits or for Pricing Retro treaties on ventilated programs; this is left to the interested 
reader. 

6. Business Implications

ILF curves were discussed in some detail in Miccolis, and they are extensively used in 
the United States, ISO calculates many ILFs and in many cases they are relied upon to 
price business.  In other countries (including Australia), insurance company 
underwriters may have a very good feel for the appropriate level of ILF.  These may 
have been taken from elsewhere, developed over time, or be based upon what the 
market can bear in terms of pricing.  We must not forget the commercial reality of 
buying higher limits, that there may be some impact of the purchaser wanting to buy 
and an unwilling seller that can be used to leverage up the price beyond what pure 
theory would suggest.  The theoretical ILFs can allow for risk volatility, but it is not 
the purpose of this paper to consider these, and this can be left as an area for further 
work.  Once we have a set of ILF curves, we can use the information in them for a 
variety of purposes, such as pricing reinsurance layers, estimating the number of 
losses above a threshold you may expect (this can be helpful for reserving purposes 
and pricing purposes).  They can also be used to estimate the volatility of this amount
if they are moved from a deterministic space to stochastic, and this paper covers some 
of the elementary mathematics required for this transition.

When setting ILFs, due consideration should be given to the marketability of the 
coverage, for example when there is a desire to buy higher layers and this can lead to 
them being priced above the economic fair value, driven by demand.

Using the information from the ILF curve, can be very useful. Especially when the 
ILFs have developed over time as they may consider losses beyond the normal past 
data re-valued starting point of many pricing exercises. By comparing the calculated 
results with the past (re-valued and projected) data we can see how much margin there 
may be in the pricing ILF factors to allow for systemic risk or the risk of black swan 
events (events with a small probability but with a massive impact).  If we can price 
reinsurance layers with stochastic ILF factors based upon our assumption, it can help 
to allocate capital more efficiently, and this allow better strategic planning, and 
managing the insurance/reinsurance cycle.
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7. Transformations required to Simulate Large Losses

So far, we have been able to calculate expected losses and recoveries of basic 
reinsurance analytically, but for more complicated scenarios, it will be desirable to 
sample losses, at least the large losses above a threshold y. This is used for example 
when pricing aggregate deductibles. Let us assume that we consider a book with 
losses of severity X described by the increased limit factors curve ILF . Furthermore 
assume that all losses are limited by a limit L, (the results can easily be extended to 
also include a deductible). When given the total loss ( )SE of the book (for example 
when premium income and loss ratio can be estimated), we now describe how large 
losses above the threshold y can be simulated. 

As a first step, we calculate, based on some earlier results (rearrange equation (3.2)
i.e. the definition of the ILF), the expected loss size of the limited severity

( )[ ] ( )[ ] ( )LILFyXELXE ×= ,min,min (7.1)

The expected number of losses is then given by (using equation (3.1)).

( ) ( ) ( )[ ]
( ) ( )[ ] ( )( )LILFyXESE

LXESENE
×=

=
,min

,min
(7.2)

We note that this describes losses of all sizes and hence need to be conditioned on the 

event { }yX > which leads to number of losses N~ above the threshold with mean
(using equation (3.5))

( ) ( ) { }
( ) ( )[ ] ( )
( ) ( )

( )LILF
yFILSE

yFILyXENE
yXPNENE

′
×=

′××=
>×=

,min

~

(7.3)

When N has a Poisson distribution then this is the case for N~ .

Finally, we can calculate the distribution for the large losses

( )( ) ( ){ }
{ } ( ) ( )yFILxFIL

yXP
xLXPyXxLXP ′′=

>
>

=>>
,min,min (7.4)

when Lx ≤ and this will be 0 for Lx > .

8. Areas for Further Work

§ Consider using the APRA claims information to enable Australia ILF factors 
to be calculated

§ Consider approaches to the development of large losses for social inflation, 
IBNER and severity fitting, and measuring the impact on the ILF curves by 
size of loss.
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9. Conclusion

We have derived formula for calculating the frequency and severity of losses above a 
threshold, thus we can derive suitable assumptions for stochastic modelling from ILF 
information. The above framework can simulate the expected losses and volatility due 
from a liability portfolio, using key pricing assumptions such as loss ratio, ILF curve 
and limit profile.  The amounts are likely to be well understood by the cedant and 
from a reinsurer/reinsurance broker perspective. We can use this information to 
extract more data around uncertainty and probability that at first glance appears 
possible.  This can lead to optimised reinsurance purchasing and improved 
understanding of large losses for liability classes.  This can also be used to compare 
the actual and expected number of large losses and may be useful in a pricing exercise 
on scheme business with a limited amount of history from which to derive robust 
large loss assumptions. It may also have applications in reserving, again where the 
past large loss history is considered to be out of date and not appropriate for the more 
recent years, as is nearly always the case if the book has been re-underwritten.
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